Code Saturn Inlet Definition
- MGolbs
-
Topic Author
- Offline
- Platinum Member
-
13 years 9 months ago #5574
by MGolbs
Dem Überflüssigen nachlaufen, heißt das Wesentliche verpassen.
Jules Saliège
Code Saturn Inlet Definition was created by MGolbs
Hallo,
wenn ich an einem Strömungsmodell inlet's definiere, müssen diese dann von der Geschwindigkeitsrichtung immer ins Medium zeigen, oder kann ich auch mit einem inlet ein definiertes outlet erzeugen?
Gruß und Dank Markus
wenn ich an einem Strömungsmodell inlet's definiere, müssen diese dann von der Geschwindigkeitsrichtung immer ins Medium zeigen, oder kann ich auch mit einem inlet ein definiertes outlet erzeugen?
Gruß und Dank Markus
Dem Überflüssigen nachlaufen, heißt das Wesentliche verpassen.
Jules Saliège
- MGolbs
-
Topic Author
- Offline
- Platinum Member
-
13 years 9 months ago #5576
by MGolbs
Dem Überflüssigen nachlaufen, heißt das Wesentliche verpassen.
Jules Saliège
Replied by MGolbs on topic Re:Code Saturn Inlet Definition
Hallo,
habe folgende Ergebnisse aber die Temperaturverteilung an einem "Outlet" kann ich mir nicht erklären:
[code:1]
<?xml version="1.0" encoding="utf-8"?><Code_Saturne_GUI case="cfd" study="solve" version="2.0">
<solution_domain>
<volumic_conditions>
<zone head_losses="off" initialization="on" label="all_cells" mass_source_term="off" momentum_source_term="off" name="1" scalar_source_term="off" thermal_source_term="off">all[]</zone>
<zone head_losses="off" initialization="on" label="Zone_2" mass_source_term="off" momentum_source_term="off" name="3" scalar_source_term="off" thermal_source_term="off">medium</zone>
</volumic_conditions>
<meshes_list>
<mesh format="ideas" name="20110622Stzroem2inlets-salome.unv"/>
</meshes_list>
<join_meshes status="off"/>
<faces_cutting status="off"/>
<reorientation status="off"/>
<periodic_boundary/>
<standalone/>
</solution_domain>
<thermophysical_models>
<velocity_pressure>
<variable label="Pressure" name="pressure">
<reference_pressure>101325</reference_pressure>
</variable>
<variable label="VelocityX" name="velocity_U">
<blending_factor>1</blending_factor>
</variable>
<variable label="VelocityY" name="velocity_V">
<blending_factor>1</blending_factor>
</variable>
<variable label="VelocityZ" name="velocity_W">
<blending_factor>1</blending_factor>
</variable>
<property label="total_pressure" name="total_pressure"/>
<property label="Yplus" name="yplus" support="boundary"/>
<property label="Efforts" name="effort" support="boundary"/>
<property label="all_variables" name="all_variables" support="boundary"/>
</velocity_pressure>
<ale_method status="off"/>
<turbulence model="k-epsilon">
<variable label="TurbEner" name="turb_k"/>
<variable label="Dissip" name="turb_eps"/>
<property label="TurbVisc" name="turb_viscosity"/>
<initialization choice="reference_velocity">
<reference_velocity>1</reference_velocity>
</initialization>
<scale_model>1</scale_model>
<gravity_terms status="off"/>
</turbulence>
<thermal_scalar model="temperature_celsius">
<property label="Flux_thermique_entrant" name="input_thermal_flux" support="boundary"/>
</thermal_scalar>
<radiative_transfer model="off">
<restart status="off"/>
<absorption_coefficient type="constant">0</absorption_coefficient>
</radiative_transfer>
<conjugate_heat_transfer>
<external_coupling status="off"/>
<external_coupling status="off"/>
<external_coupling status="off"/>
<external_coupling status="off"/>
<external_coupling status="on"/>
</conjugate_heat_transfer>
<gas_combustion model="off"/>
<pulverized_coal model="off"/>
<joule_effect model="off"/>
<atmospheric_flows model="off"/>
<heads_losses/>
</thermophysical_models>
<numerical_parameters>
<multigrid status="on"/>
<gradient_transposed status="on"/>
<velocity_pressure_coupling status="off"/>
<pressure_relaxation>1</pressure_relaxation>
<wall_pressure_extrapolation>0</wall_pressure_extrapolation>
<gradient_reconstruction choice="0"/>
</numerical_parameters>
<physical_properties>
<fluid_properties>
<property choice="constant" label="Density" name="density">
<listing_printing status="off"/>
<postprocessing_recording status="off"/>
<initial_value>780</initial_value>
</property>
<property choice="constant" label="LamVisc" name="molecular_viscosity">
<listing_printing status="off"/>
<postprocessing_recording status="off"/>
<initial_value>9e-05</initial_value>
</property>
<property choice="constant" label="SpecHeat" name="specific_heat">
<listing_printing status="off"/>
<postprocessing_recording status="off"/>
<initial_value>5500</initial_value>
</property>
<property choice="constant" label="ThermalCond" name="thermal_conductivity">
<listing_printing status="off"/>
<postprocessing_recording status="off"/>
<initial_value>0.02495</initial_value>
</property>
</fluid_properties>
<gravity>
<gravity_x>0</gravity_x>
<gravity_y>0</gravity_y>
<gravity_z>0</gravity_z>
</gravity>
<hydrostatic_pressure status="off"/>
</physical_properties>
<additional_scalars>
<scalar label="TempC" name="temperature_celsius" type="thermal">
<initial_value label="all_cells" zone="1">0.0</initial_value>
<min_value>0</min_value>
<max_value>400</max_value>
<initial_value label="Zone_2" zone="3">20.0</initial_value>
<blending_factor>1</blending_factor>
</scalar>
</additional_scalars>
<boundary_conditions>
<variable/>
<boundary label="BC_2" name="2" nature="inlet">inlet1</boundary>
<boundary label="BC_3" name="3" nature="inlet">inlet2</boundary>
<boundary label="BC_4" name="4" nature="outlet">outlet1</boundary>
<boundary label="BC_5" name="5" nature="outlet">outlet2</boundary>
<boundary label="BC_6" name="6" nature="wall">wand</boundary>
<wall label="BC_6">
<velocity_pressure choice="off">
<dirichlet name="velocity_U">0</dirichlet>
<dirichlet name="velocity_V">0</dirichlet>
<dirichlet name="velocity_W">0</dirichlet>
</velocity_pressure>
<scalar choice="neumann" label="TempC" name="temperature_celsius" type="thermal">
<neumann>0</neumann>
</scalar>
</wall>
<inlet label="BC_2">
<velocity_pressure choice="norm" direction="normal">
<norm>1</norm>
</velocity_pressure>
<turbulence choice="hydraulic_diameter">
<hydraulic_diameter>1</hydraulic_diameter>
</turbulence>
<scalar choice="dirichlet" label="TempC" name="temperature_celsius" type="thermal">
<dirichlet>300</dirichlet>
</scalar>
</inlet>
<inlet label="BC_3">
<velocity_pressure choice="norm" direction="normal">
<norm>-1</norm>
</velocity_pressure>
<turbulence choice="hydraulic_diameter">
<hydraulic_diameter>1</hydraulic_diameter>
</turbulence>
<scalar choice="dirichlet" label="TempC" name="temperature_celsius" type="thermal">
<dirichlet>300</dirichlet>
</scalar>
</inlet>
<outlet label="BC_4">
<scalar choice="dirichlet" label="TempC" name="temperature_celsius" type="thermal">
<dirichlet>0</dirichlet>
</scalar>
</outlet>
<outlet label="BC_5">
<scalar choice="dirichlet" label="TempC" name="temperature_celsius" type="thermal">
<dirichlet>0</dirichlet>
</scalar>
</outlet>
</boundary_conditions>
<analysis_control>
<output>
<postprocessing_mesh_options choice="0"/>
<syrthes_boundary status="off"/>
<postprocessing_format choice="MED_fichier"/>
<postprocessing_options choice="binary"/>
<listing_printing_frequency>1</listing_printing_frequency>
<postprocessing_frequency>1</postprocessing_frequency>
<probe_recording_frequency>1</probe_recording_frequency>
<fluid_domain status="on"/>
<domain_boundary status="off"/>
</output>
<time_parameters>
<time_step_ref>0.1</time_step_ref>
<iterations>10</iterations>
<time_passing>0</time_passing>
</time_parameters>
<steady_management status="on">
<zero_iteration status="off"/>
<iterations>10</iterations>
<relaxation_coefficient>0.9</relaxation_coefficient>
</steady_management>
<time_averages/>
<profiles/>
</analysis_control>
<calcul_management>
<integer_user_array>
<ncelet>0</ncelet>
<nfac>0</nfac>
<nfabor>0</nfabor>
<dimless>0</dimless>
</integer_user_array>
<real_user_array>
<ncelet>0</ncelet>
<nfac>0</nfac>
<nfabor>0</nfabor>
<dimless>0</dimless>
</real_user_array>
<start_restart>
<restart status="off"/>
<frozen_field status="off"/>
</start_restart>
<integer_work_array>
<ncelet>0</ncelet>
<nfac>0</nfac>
<nfabor>0</nfabor>
<dimless>0</dimless>
</integer_work_array>
<real_work_array>
<ncelet>0</ncelet>
<nfac>0</nfac>
<nfabor>0</nfabor>
<dimless>0</dimless>
</real_work_array>
</calcul_management>
<lagrangian model="off"/>
</Code_Saturne_GUI>
[/code:1]
Warum erhöht sich die Temperatur am "saugenden Outlet", oder darf ich ein Outlet so nicht benutzen wie auch eines der Inlets nicht mit negativem Vorzeichen versehen?
Gruß und Dank Markus<br /><br />Post edited by: MGolbs, at: 2011/06/24 11:36
habe folgende Ergebnisse aber die Temperaturverteilung an einem "Outlet" kann ich mir nicht erklären:
[code:1]
<?xml version="1.0" encoding="utf-8"?><Code_Saturne_GUI case="cfd" study="solve" version="2.0">
<solution_domain>
<volumic_conditions>
<zone head_losses="off" initialization="on" label="all_cells" mass_source_term="off" momentum_source_term="off" name="1" scalar_source_term="off" thermal_source_term="off">all[]</zone>
<zone head_losses="off" initialization="on" label="Zone_2" mass_source_term="off" momentum_source_term="off" name="3" scalar_source_term="off" thermal_source_term="off">medium</zone>
</volumic_conditions>
<meshes_list>
<mesh format="ideas" name="20110622Stzroem2inlets-salome.unv"/>
</meshes_list>
<join_meshes status="off"/>
<faces_cutting status="off"/>
<reorientation status="off"/>
<periodic_boundary/>
<standalone/>
</solution_domain>
<thermophysical_models>
<velocity_pressure>
<variable label="Pressure" name="pressure">
<reference_pressure>101325</reference_pressure>
</variable>
<variable label="VelocityX" name="velocity_U">
<blending_factor>1</blending_factor>
</variable>
<variable label="VelocityY" name="velocity_V">
<blending_factor>1</blending_factor>
</variable>
<variable label="VelocityZ" name="velocity_W">
<blending_factor>1</blending_factor>
</variable>
<property label="total_pressure" name="total_pressure"/>
<property label="Yplus" name="yplus" support="boundary"/>
<property label="Efforts" name="effort" support="boundary"/>
<property label="all_variables" name="all_variables" support="boundary"/>
</velocity_pressure>
<ale_method status="off"/>
<turbulence model="k-epsilon">
<variable label="TurbEner" name="turb_k"/>
<variable label="Dissip" name="turb_eps"/>
<property label="TurbVisc" name="turb_viscosity"/>
<initialization choice="reference_velocity">
<reference_velocity>1</reference_velocity>
</initialization>
<scale_model>1</scale_model>
<gravity_terms status="off"/>
</turbulence>
<thermal_scalar model="temperature_celsius">
<property label="Flux_thermique_entrant" name="input_thermal_flux" support="boundary"/>
</thermal_scalar>
<radiative_transfer model="off">
<restart status="off"/>
<absorption_coefficient type="constant">0</absorption_coefficient>
</radiative_transfer>
<conjugate_heat_transfer>
<external_coupling status="off"/>
<external_coupling status="off"/>
<external_coupling status="off"/>
<external_coupling status="off"/>
<external_coupling status="on"/>
</conjugate_heat_transfer>
<gas_combustion model="off"/>
<pulverized_coal model="off"/>
<joule_effect model="off"/>
<atmospheric_flows model="off"/>
<heads_losses/>
</thermophysical_models>
<numerical_parameters>
<multigrid status="on"/>
<gradient_transposed status="on"/>
<velocity_pressure_coupling status="off"/>
<pressure_relaxation>1</pressure_relaxation>
<wall_pressure_extrapolation>0</wall_pressure_extrapolation>
<gradient_reconstruction choice="0"/>
</numerical_parameters>
<physical_properties>
<fluid_properties>
<property choice="constant" label="Density" name="density">
<listing_printing status="off"/>
<postprocessing_recording status="off"/>
<initial_value>780</initial_value>
</property>
<property choice="constant" label="LamVisc" name="molecular_viscosity">
<listing_printing status="off"/>
<postprocessing_recording status="off"/>
<initial_value>9e-05</initial_value>
</property>
<property choice="constant" label="SpecHeat" name="specific_heat">
<listing_printing status="off"/>
<postprocessing_recording status="off"/>
<initial_value>5500</initial_value>
</property>
<property choice="constant" label="ThermalCond" name="thermal_conductivity">
<listing_printing status="off"/>
<postprocessing_recording status="off"/>
<initial_value>0.02495</initial_value>
</property>
</fluid_properties>
<gravity>
<gravity_x>0</gravity_x>
<gravity_y>0</gravity_y>
<gravity_z>0</gravity_z>
</gravity>
<hydrostatic_pressure status="off"/>
</physical_properties>
<additional_scalars>
<scalar label="TempC" name="temperature_celsius" type="thermal">
<initial_value label="all_cells" zone="1">0.0</initial_value>
<min_value>0</min_value>
<max_value>400</max_value>
<initial_value label="Zone_2" zone="3">20.0</initial_value>
<blending_factor>1</blending_factor>
</scalar>
</additional_scalars>
<boundary_conditions>
<variable/>
<boundary label="BC_2" name="2" nature="inlet">inlet1</boundary>
<boundary label="BC_3" name="3" nature="inlet">inlet2</boundary>
<boundary label="BC_4" name="4" nature="outlet">outlet1</boundary>
<boundary label="BC_5" name="5" nature="outlet">outlet2</boundary>
<boundary label="BC_6" name="6" nature="wall">wand</boundary>
<wall label="BC_6">
<velocity_pressure choice="off">
<dirichlet name="velocity_U">0</dirichlet>
<dirichlet name="velocity_V">0</dirichlet>
<dirichlet name="velocity_W">0</dirichlet>
</velocity_pressure>
<scalar choice="neumann" label="TempC" name="temperature_celsius" type="thermal">
<neumann>0</neumann>
</scalar>
</wall>
<inlet label="BC_2">
<velocity_pressure choice="norm" direction="normal">
<norm>1</norm>
</velocity_pressure>
<turbulence choice="hydraulic_diameter">
<hydraulic_diameter>1</hydraulic_diameter>
</turbulence>
<scalar choice="dirichlet" label="TempC" name="temperature_celsius" type="thermal">
<dirichlet>300</dirichlet>
</scalar>
</inlet>
<inlet label="BC_3">
<velocity_pressure choice="norm" direction="normal">
<norm>-1</norm>
</velocity_pressure>
<turbulence choice="hydraulic_diameter">
<hydraulic_diameter>1</hydraulic_diameter>
</turbulence>
<scalar choice="dirichlet" label="TempC" name="temperature_celsius" type="thermal">
<dirichlet>300</dirichlet>
</scalar>
</inlet>
<outlet label="BC_4">
<scalar choice="dirichlet" label="TempC" name="temperature_celsius" type="thermal">
<dirichlet>0</dirichlet>
</scalar>
</outlet>
<outlet label="BC_5">
<scalar choice="dirichlet" label="TempC" name="temperature_celsius" type="thermal">
<dirichlet>0</dirichlet>
</scalar>
</outlet>
</boundary_conditions>
<analysis_control>
<output>
<postprocessing_mesh_options choice="0"/>
<syrthes_boundary status="off"/>
<postprocessing_format choice="MED_fichier"/>
<postprocessing_options choice="binary"/>
<listing_printing_frequency>1</listing_printing_frequency>
<postprocessing_frequency>1</postprocessing_frequency>
<probe_recording_frequency>1</probe_recording_frequency>
<fluid_domain status="on"/>
<domain_boundary status="off"/>
</output>
<time_parameters>
<time_step_ref>0.1</time_step_ref>
<iterations>10</iterations>
<time_passing>0</time_passing>
</time_parameters>
<steady_management status="on">
<zero_iteration status="off"/>
<iterations>10</iterations>
<relaxation_coefficient>0.9</relaxation_coefficient>
</steady_management>
<time_averages/>
<profiles/>
</analysis_control>
<calcul_management>
<integer_user_array>
<ncelet>0</ncelet>
<nfac>0</nfac>
<nfabor>0</nfabor>
<dimless>0</dimless>
</integer_user_array>
<real_user_array>
<ncelet>0</ncelet>
<nfac>0</nfac>
<nfabor>0</nfabor>
<dimless>0</dimless>
</real_user_array>
<start_restart>
<restart status="off"/>
<frozen_field status="off"/>
</start_restart>
<integer_work_array>
<ncelet>0</ncelet>
<nfac>0</nfac>
<nfabor>0</nfabor>
<dimless>0</dimless>
</integer_work_array>
<real_work_array>
<ncelet>0</ncelet>
<nfac>0</nfac>
<nfabor>0</nfabor>
<dimless>0</dimless>
</real_work_array>
</calcul_management>
<lagrangian model="off"/>
</Code_Saturne_GUI>
[/code:1]
Warum erhöht sich die Temperatur am "saugenden Outlet", oder darf ich ein Outlet so nicht benutzen wie auch eines der Inlets nicht mit negativem Vorzeichen versehen?
Gruß und Dank Markus<br /><br />Post edited by: MGolbs, at: 2011/06/24 11:36
Dem Überflüssigen nachlaufen, heißt das Wesentliche verpassen.
Jules Saliège
Moderators: catux
Time to create page: 0.152 seconds